Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

kinesin family member 14 OKDB#: 5497
 Symbols: KIF14 Species: human
 Synonyms: MKS12  Locus: 1q32.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes a member of the kinesin-3 superfamily of microtubule motor proteins. These proteins are involved in numerous processes including vesicle transport, chromosome segregation, mitotic spindle formation, and cytokinesis. In human HeLa-S3 and 293T cells, this protein is localized to the cytoplasm during interphase, to the spindle poles and spindle microtubules during mitosis, and to the midbody during cytokinesis. An internal motor domain displays microtubule-dependent ATPase activity, consistent with its function as a microtubule motor protein. Knockdown of this gene results in failed cytokinesis with endoreplication, which results in multinucleated cells. This gene has been identified as a likely oncogene in breast, lung and ovarian cancers, as well as retinoblastomas and gliomas. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2015]
General function Cytoskeleton organization
Comment
Cellular localization Cytoskeleton
Comment
Ovarian function Oocyte maturation
Comment 14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes. Beaven R et al. (2017) The meiotic spindle is formed without centrosomes in a large volume of oocytes. Local activation of crucial spindle proteins around chromosomes is important for formation and maintenance of a bipolar spindle in oocytes. We found that phosphodocking 14-3-3 proteins stabilize spindle bipolarity in Drosophila melanogaster oocytes. A critical 14-3-3 target is the minus end-directed motor Ncd (human HSET; kinesin-14), which has well-documented roles in stabilizing a bipolar spindle in oocytes. Phospho docking by 14-3-3 inhibits the microtubule binding activity of the nonmotor Ncd tail. Further phosphorylation by Aurora B kinase can release Ncd from this inhibitory effect of 14-3-3. As Aurora B localizes to chromosomes and spindles, 14-3-3 facilitates specific association of Ncd with spindle microtubules by preventing Ncd from binding to nonspindle microtubules in oocytes. Therefore, 14-3-3 translates a spatial cue provided by Aurora B to target Ncd selectively to the spindle within the large volume of oocytes.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Sept. 6, 2017, 10:32 a.m. by: system   email:
home page:
last update: Sept. 6, 2017, 10:34 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form