Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

centrosomal protein 55 OKDB#: 5296
 Symbols: CEP55 Species: human
 Synonyms: CT111, MARCH, URCC6, C10orf3  Locus: 10q23.33 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment
General function Chromosome organization
Comment
Cellular localization Nuclear
Comment
Ovarian function Oocyte maturation
Comment First meiotic anaphase requires Cep55-dependent inhibitory Cdk1 phosphorylation. Zhou C et al. (2019) During mitosis, anaphase is triggered by anaphase-promoting complex (APC)-mediated destruction of securin and cyclin B1, which leads to inactivation of cyclin-dependent kinase 1 (Cdk1). By regulating APC activity, the mitotic spindle assembly checkpoint (SAC) therefore has robust control over anaphase-timing to prevent chromosome mis-segregation. Mammalian oocytes are prone to aneuploidy, the reasons for which, remain obscure. Here, in mouse oocytes, we deplete Cep55, which, in mitosis, is required post-anaphase for the final steps of cytokinesis. We find that Cep55-depleted oocytes progress normally through early meiosis I, but that anaphase I fails due to persistent Cdk1 activity. Unexpectedly, compromised Cdk1 inactivation following Cep55-depletion occurred despite on-time SAC silencing and intact APC-mediated proteolysis. Instead, it was due to inadequate inhibitory Cdk1 phosphorylation consequent upon failure to suppress Cdc25 phosphatase, identifying a proteolysis-independent step necessary for anaphase I. Thus, the SAC in oocytes does not exert exclusive control over anaphase I-initiation, providing new insight into vulnerability to error.////////////////// Cep55 regulates spindle organization and cell cycle progression in meiotic oocyte. Xu ZY et al. (2015) Cep55 is a relatively novel member of the centrosomal protein family. Here, we show that Cep55 is expressed in mouse oocytes from the germinal vesicle (GV) to metaphase II (MII) stages. Immuostaining and confocal microscopy as well as time lapse live imaging after injection of mRNA encoding fusion protein of Cep55 and GFP identified that Cep55 was localized to the meiotic spindle, especially to the spindle poles at metaphase, while it was concentrated at the midbody in telophase in meiotic oocytes. Knockdown of Cep55 by specific siRNA injection caused the dissociation of γ-tubulin from the spindle poles, resulting in severely defective spindles and misaligned chromosomes, leading to metaphase I arrest and failure of first polar body (PB1) extrusion. Correspondingly, cyclin B accumulation and spindle assembly checkpoint (SAC) activation were observed in Cep55 knockdown oocytes. Our results suggest that Cep55 may act as an MTOC-associated protein regulating spindle organization, and thus cell cycle progression during mouse oocyte meiotic maturation.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Nov. 24, 2015, 1:17 p.m. by: system   email:
home page:
last update: Aug. 21, 2019, 11:30 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form