Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

ABO blood group (transferase A, alpha 1-3-N-acetylgalactosaminyltransferase; transferase B, alpha 1- OKDB#: 4864
 Symbols: ABO Species: human
 Synonyms: GTB, NAGAT, A3GALNT, A3GALT1,  Locus: 9q34.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes proteins related to the first discovered blood group system, ABO. Which allele is present in an individual determines the blood group. The 'O' blood group is caused by a deletion of guanine-258 near the N-terminus of the protein which results in a frameshift and translation of an almost entirely different protein. Individuals with the A, B, and AB alleles express glycosyltransferase activities that convert the H antigen into the A or B antigen. Other minor alleles have been found for this gene. [provided by RefSeq, Jul 2008]
General function
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase ii. Grndahl ML et al. Oocytes become enclosed in primordial follicles during fetal life and remain there dormant until activation followed by growth and meiotic resumption. Current knowledge about the molecular pathways involved in oogenesis is incomplete. This study identifies the specific transcriptome of the human oocyte in the quiescent state and at the pinnacle of maturity at ovulation. In silico bioinformatic comparisons were performed between transcriptome of human oocytes from dormant primordial follicles and that of human metaphase II (MII) oocytes and granulosa cells and unique gene expression profiles were identified as well as functional and pathway enrichments associated with the oocytes from the two developmental hallmarks. A total of 729 genes were highly enriched in oocytes from primodial folllicles and 1456 genes were highly enriched in MII oocytes (>10 fold, p<0.001) representing functional categories such as cell cycle regulation, DNA protection and epigenetics, with representative genes validated by qPCR analysis. Dominating canonical pathways in the oocytes from primordial follicles were androgen, estrogen receptor, glucocortocoid receptor and PI3 K/AKT signaling (p<0.001). In the MII, mitotic roles of polo-like kinases, estrogen receptor, JAK/Stat signaling (p<0.001) and the ERK/MAPK (p<0.01) signaling were enriched. Some of the highly differentially expressed genes were completely new in human reproduction (CDR1, TLC1A, UHRF2) while other genes (ABO, FOLR1 (folate receptor), CHRNA3 (nicotine receptor)) may relate to clinical observations as diverse as premature ovarian failure, folic acid deficiency and smoking affecting female fertility. The in silico analysis identified novel reproduction associated genes and highlighted molecular mechanisms and pathways associated to the unique functions of the human oocyte in its two extremes of the folliculogenesis. The data provides a fundamental basis for future functional studies in regulation of human oogenesis.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: April 22, 2013, 2:47 p.m. by: hsueh   email:
home page:
last update: April 22, 2013, 2:48 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form