Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

testis and ovary specific PAZ domain containing 1 OKDB#: 4571
 Symbols: TOPAZ1 Species: human
 Synonyms: C3orf77  Locus: 3p21.31 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment
General function
Comment
Cellular localization
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Primordial Germ Cell
Comment TOPAZ1, a Novel Germ Cell-Specific Expressed Gene Conserved during Evolution across Vertebrates. Baillet A et al. We had previously reported that the Suppression Subtractive Hybridization (SSH) approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene.Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons), respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.
Follicle stages
Comment
Phenotypes POF (premature ovarian failure)
Mutations 2 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: fertile
Comment: TOPAZ1, a germ cell specific factor, is essential for male meiotic progression. Luangpraseuth-Prosper A et al. (2015) Topaz1 (Testis and Ovary-specific PAZ domain gene 1) is a germ cell specific gene highly conserved in vertebrates. The putative protein TOPAZ1 contains a PAZ domain, specifically found in PIWI, Argonaute and Zwille proteins. Consequently, Topaz1 is supposed to have a role during gametogenesis and may be involved in the piRNA pathway and contribute to silencing of transposable elements and maintenance of genome integrity. Here we report Topaz1 inactivation in mouse. Female fertility was not affected, but male sterility appeared exclusively in homozygous mutants in accordance with the high expression of Topaz1 in male germ cells. Pachytene Topaz1 - deficient spermatocytes progress through meiosis without either derepression of retrotransposons or MSCI dysfunction, but become arrested before the post-meiotic round spermatid stage with extensive apoptosis. Consequently, an absence of spermatids and spermatozoa was observed in Topaz1(-/-) testis. Histological analysis also revealed that disturbances of spermatogenesis take place between post natal days 15 and 20, during the first wave of male meiosis and before the generation of haploid germ cells. Transcriptomic analysis at these two stages showed that TOPAZ1 influences the expression of one hundred transcripts, most of which are up-regulated in mutant testis at post natal day 20. Our results also showed that 10% of these transcripts are long non-coding RNA. This suggests that a highly regulated balance of lncRNAs seems to be essential during spermatogenesis for induction of appropriate male gamete production.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Patiño LC et al. (2017) Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. This is a retrospective cohort study performed on 69 women affected by POI. WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Nov. 19, 2011, 2:49 p.m. by: hsueh   email:
home page:
last update: April 3, 2020, 1:07 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form