Stanford Home
Ovarian Kaleidoscope Database (OKdb)



Transgenic Mouse Models



Hsueh lab


since 01/2001:

damage-specific DNA binding protein 1, 127kDa OKDB#: 4523
 Symbols: DDB1 Species: human
 Synonyms: XPE, DDBA, XAP1, XPCE, XPE-BF, UV-DDB1  Locus: 11q12-q13 in Homo sapiens

For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!


DNA Microarrays
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene is the large subunit (p127) of the heterodimeric DNA damage-binding (DDB) complex while another protein (p48) forms the small subunit. This protein complex functions in nucleotide-excision repair and binds to DNA following UV damage. Defective activity of this complex causes the repair defect in patients with xeroderma pigmentosum complementation group E (XPE) - an autosomal recessive disorder characterized by photosensitivity and early onset of carcinomas. However, it remains for mutation analysis to demonstrate whether the defect in XPE patients is in this gene or the gene encoding the small subunit. In addition, Best vitelliform mascular dystrophy is mapped to the same region as this gene on 11q, but no sequence alternations of this gene are demonstrated in Best disease patients. The protein encoded by this gene also functions as an adaptor molecule for the cullin 4 (CUL4) ubiquitin E3 ligase complex by facilitating the binding of substrates to this complex and the ubiquitination of proteins. [provided by RefSeq, May 2012]
General function , Epigenetic modifications
Cellular localization
Ovarian function Primary follicle growth, Cumulus expansion, Follicle atresia, Germ cell development, Oocyte maturation, Early embryo development
Expression regulated by
Ovarian localization Oocyte
Follicle stages
Mutations 3 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: infertile - ovarian defect
Comment: CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Yu C 2013 et al. The duration of a woman's reproductive period is determined by the size and persistence of a dormant oocyte pool. Specific oocyte genes are essential for follicle maintenance and female fertility. The mechanisms that regulate the expression of these genes are poorly understood. We found that a cullin-ring finger ligase-4 (CRL4) complex was crucial in this process. Oocyte-specific deletion of the CRL4 linker protein DDB1 or its substrate adaptor VPRBP (also known as DCAF1) caused rapid oocyte loss, premature ovarian insufficiency, and silencing of fertility maintaining genes. CRL4(VPRBP) activates the TET methylcytosine dioxygenases, which are involved in female germ cell development and zygote genome reprogramming. Hence, CRL4(VPRBP) ubiquitin ligase is a guardian of female reproductive life in germ cells and a maternal reprogramming factor after fertilization. /////////////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: CRL4DCAF1 is required in activated oocytes for follicle maintenance and ovulation. Yu C et al. (2014) In mammals, oocytes within the primordial follicles require a number of essential factors to maintain their survival. However, the survival factors for activated oocytes have been poorly characterized. Recently we reported that damaged DNA binding protein-1 (DDB1), the linker subunit of the cullin ring-finger ubiquitin E3 ligase-4 (CRL4) complex, and its substrate adaptor, DDB1-CUL4 associated factor-1 (DCAF1), were essential for primordial follicle maintenance. In this study we specifically deleted these in the oocytes of growing follicles, to investigate if DDB1 and DCAF1 were also survival factors for activated oocytes. In the ovaries of Ddb1(fl/fl);Zp3-Cre mice, the primordial follicle pool was intact, but awakened oocytes and growing follicles beyond the primary stage were rapidly depleted. In the ovaries of Dcaf1(fl/fl);Pten(fl/fl);Gdf9-Cre and Ddb1(fl/fl);Pten(fl/fl);Gdf9-Cre mice, global primordial follicle activation was stimulated by enhanced PI3K signaling, but the awakened oocytes were rapidly lost due to no CRL4(DCAF1) activity. These mouse models provided original evidence that CRL4(DCAF1) was essential for maintaining oocyte survival, not only those in dormancy at the primordial follicle stage, but also naturally awakened oocytes and those awakened by hyper-activation of PI3K signaling. Interestingly, the oocyte-specific Ddb1 or Dcaf1 knockout mice had ovulation defects even before oocyte exhaustion. CRL4(DCAF1) within oocytes was required for cumulus expansion and ovulation-related somatic gene expression in a cell non-autonomous manner. Granulosa cells that surrounded these Ddb1 or Dcaf1-deleted oocytes exhibited increased rates of apoptosis and showed poor responses to ovulation signals. These results suggested that CRL4 in oocytes also regulated granulosa cell functions in a cell non-autonomous manner.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Yu C et al. (2015) Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody

created: Aug. 3, 2011, 10:44 p.m. by: hsueh   email:
home page:
last update: Aug. 25, 2015, 1:33 p.m. by: hsueh    email:

Use the back button of your browser to return to the Gene List.

Click here to return to gene search form