Stanford Home
Ovarian Kaleidoscope Database (OKdb)



Transgenic Mouse Models



Hsueh lab


since 01/2001:

formin like 2 OKDB#: 4505
 Symbols: FMNL2 Species: human
 Synonyms: FHOD2  Locus: 2q23.3 in Homo sapiens

For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!


DNA Microarrays
link to BioGPS
General Comment Roles of actin-binding proteins in mammalian oocyte maturation and beyond. Namgoong S et al. (2016) Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.//////////////////

NCBI Summary: This gene encodes a formin-related protein. Formin-related proteins have been implicated in morphogenesis, cytokinesis, and cell polarity. Alternatively spliced transcript variants encoding different isoforms have been described but their full-length nature has yet to be determined. [provided by RefSeq, Jul 2008]
General function
Cellular localization
Ovarian function , First polar body extrusion
Comment Role of the C-terminal extension of Formin 2 in its activation by Spire and processive assembly of actin filaments. Montaville P et al. (2015) Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WH2 repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The KIND domain of Spire directly interacts with the C-terminal extension of the FH2 domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends, but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin-actin. Here we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as the processivity of Fmn2. We have combined microcalorimetric, fluorescence and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a capping protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end.////////////////// Small Molecule Inhibitor of Formin Homology 2 Domains (SMIFH2) Reveals the Roles of the Formin Family of Proteins in Spindle Assembly and Asymmetric Division in Mouse Oocytes. Kim HC et al. (2015) Dynamic actin reorganization is the main driving force for spindle migration and asymmetric cell division in mammalian oocytes. It has been reported that various actin nucleators including Formin-2 are involved in the polarization of the spindle and in asymmetric cell division. In mammals, the formin family is comprised of 15 proteins. However, their individual roles in spindle migration and/or asymmetric division have not been elucidated yet. In this study, we employed a newly developed inhibitor for formin family proteins, small molecule inhibitor of formin homology 2 domains (SMIFH2), to assess the functions of the formin family in mouse oocyte maturation. Treatment with SMIFH2 during in vitro maturation of mouse oocytes inhibited maturation by decreasing cytoplasmic and cortical actin levels. In addition, treatment with SMIFH2, especially at higher concentrations (500 μM), impaired the proper formation of meiotic spindles, indicating that formins play a role in meiotic spindle formation. Knockdown of the mDia2 formins caused a similar decrease in oocyte maturation and abnormal spindle morphology, mimicking the phenotype of SMIFH2-treated cells. Collectively, these results suggested that besides Formin-2, the other proteins of the formin, including mDia family play a role in asymmetric division and meiotic spindle formation in mammalian oocytes.////////////////// Active diffusion positions the nucleus in mouse oocytes. Almonacid M et al. (2015) In somatic cells, the position of the cell centroid is dictated by the centrosome. The centrosome is instrumental in nucleus positioning, the two structures being physically connected. Mouse oocytes have no centrosomes, yet harbour centrally located nuclei. We demonstrate how oocytes define their geometric centre in the absence of centrosomes. Using live imaging of oocytes, knockout for the formin 2 actin nucleator, with off-centred nuclei, together with optical trapping and modelling, we discover an unprecedented mode of nucleus positioning. We document how active diffusion of actin-coated vesicles, driven by myosin Vb, generates a pressure gradient and a propulsion force sufficient to move the oocyte nucleus. It promotes fluidization of the cytoplasm, contributing to nucleus directional movement towards the centre. Our results highlight the potential of active diffusion, a prominent source of intracellular transport, able to move large organelles such as nuclei, providing in vivo evidence of its biological function.//////////////////
Expression regulated by
Ovarian localization Oocyte
Comment Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Azoury J et al. Female meiotic divisions are extremely asymmetric, giving rise to a large oocyte and small degenerating polar bodies, keeping the maternal stores for further embryo development. This asymmetry is achieved via off-center positioning of the division spindle. Mouse oocytes have developed a formin-2-dependent actin-based spindle positioning mechanism that allows the meiotic spindle to migrate towards the closest cortex. Using spinning disk microscopy and FRAP analysis, we studied the changes in the organization of the cytoplasmic F-actin meshwork during the first meiotic division. It is very dense in prophase I, undergoes a significant density drop upon meiosis resumption and reforms progressively later on. This meshwork remodeling correlates with endogenous formin 2 regulation. High formin 2 levels at meiosis I entry induce meshwork maintenance, leading to equal forces being exerted on the chromosomes, preventing spindle migration. Hence, the meshwork density drop at meiosis resumption is germane to the symmetry-breaking event required for successful asymmetric meiotic divisions.
Follicle stages
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody

created: June 15, 2011, 3:54 p.m. by: hsueh   email:
home page:
last update: May 9, 2016, 1:14 p.m. by: hsueh    email:

Use the back button of your browser to return to the Gene List.

Click here to return to gene search form