Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

ATP-binding cassette, sub-family C (CFTR/MRP), member 9 OKDB#: 4391
 Symbols: ABCC9 Species: human
 Synonyms: SUR2, ABC37, CMD1O, FLJ36852,  Locus: 12p12.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MRP subfamily which is involved in multi-drug resistance. This protein is thought to form ATP-sensitive potassium channels in cardiac, skeletal, and vascular and non-vascular smooth muscle. Protein structure suggests a role as the drug-binding channel-modulating subunit of the extrapancreatic ATP-sensitive potassium channels. No disease has been associated with this gene thus far. Alternative splicing of this gene results in several products, two of which result from differential usage of two terminal exons and one of which results from exon deletion. [provided by RefSeq]
General function Channel/transport protein
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Human oocytes express ATP-sensitive K+ channels. Du Q et al. BACKGROUND ATP-sensitive K(+) (K(ATP)) channels link intracellular metabolism with membrane excitability and play crucial roles in cellular physiology and protection. The K(ATP) channel protein complex is composed of pore forming, Kir6.x (Kir6.1 or Kir6.2) and regulatory, SURx (SUR2A, SUR2B or SUR1), subunits that associate in different combinations. The objective of this study was to determine whether mammalian oocytes (human, bovine, porcine) express K(ATP) channels. METHODS Supernumerary human oocytes at different stages of maturation were obtained from patients undergoing assisted conception treatments. Bovine and porcine oocytes in the germinal vesicle (GV) stage were obtained by aspirating antral follicles from abattoir-derived ovaries. The presence of mRNA for K(ATP) channel subunits was determined using real-time RT-PCR with primers specific for Kir6.2, Kir6.1, SUR1, SUR2A and SUR2B. To assess whether functional K(ATP) channels are present in human oocytes, traditional and perforated patch whole cell electrophysiology and immunoprecipitation/western blotting were used. RESULTS Real-time PCR revealed that mRNA for Kir6.1, Kir6.2, SUR2A and SUR2B, but not SUR1, were present in human oocytes of different stages. Only SUR2B and Kir6.2 mRNAs were detected in GV stage bovine and porcine oocytes. Immunoprecipitation with SUR2 antibody and western blotting with Kir6.1 antibody identified bands corresponding to these subunits in human oocytes. In human oocytes, 2,4-dinitrophenol (400 M), a metabolic inhibitor known to decrease intracellular ATP and activate K(ATP) channels, increased whole cell K(+) current. On the other hand, K(+) current induced by low intracellular ATP was inhibited by extracellular glibenclamide (30 M), an oral antidiabetic known to block the opening of K(ATP) channels. CONCLUSIONS In conclusion, mammalian oocytes express K(ATP) channels. This opens a new avenue of research into the complex relationship between metabolism and membrane excitability in oocytes under different conditions, including conception.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Sept. 21, 2010, 8:23 p.m. by: hsueh   email:
home page:
last update: Sept. 21, 2010, 8:24 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form