Stanford Home
Ovarian Kaleidoscope Database (OKdb)



Transgenic Mouse Models



Hsueh lab


since 01/2001:

microRNA 30d OKDB#: 4379
 Symbols: MIR30D Species: human
 Synonyms: MIRN30D,  Locus: 8q24.22 in Homo sapiens

For retrieval of Nucleotide and Amino Acid sequences please go to: Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!


DNA Microarrays
link to BioGPS
General Comment NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq]
General function RNA binding
Cellular localization
Ovarian function
Expression regulated by FSH
Ovarian localization Cumulus, Granulosa
Comment Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Yao N et al. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally by interacting with the 3' untranslated regions of their target mRNAs. Previously, miRNAs have been shown to regulate genes involved in cell growth, apoptosis, and differentiation, but their role in ovarian granulosa cell follicle-stimulating hormone (FSH)-stimulated steroidogenesis is unclear. Here we show that expression of 31 miRNAs is altered during FSH-mediated progesterone secretion of cultured granulosa cells. Specifically, 12 h after FSH treatment, miRNAs mir-29a and mir-30d were significantly down-regulated. However, their expression increased after 48 h. Bioinformatic analysis used to predict potential targets of mir-29a and mir-30d revealed a wide array of potential mRNA target genes, including those encoding genes involved in multiple signaling pathways. Taken together, our results pointed to a novel mechanism for the pleiotropic effects of FSH. MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex. Assou S 2013 et al. STUDY QUESTION What is the expression pattern of microRNAs (miRNAs) in human cumulus-oocyte complexes (COCs)? SUMMARY ANSWER Several miRNAs are enriched in cumulus cells (CCs) or oocytes, and are predicted to target genes involved in biological functions of the COC. WHAT IS KNOWN ALREADY The transcriptional profiles of human MII oocytes and the surrounding CCs are known. However, very limited data are available about post-transcriptional regulators, such as miRNAs. This is the first study focussing on the identification and quantification of small RNAs, including miRNAs, in human oocytes and CCs using a deep-sequencing approach. STUDY DESIGN, SIZE, DURATION MII oocytes and CCs were collected from women who underwent IVF. PARTICIPANTS/MATERIALS, SETTING, METHODS Using the Illumina/deep-sequencing technology, we analyzed the small RNAome of pooled MII oocytes (n = 24) and CC samples (n = 20). The mRNA targets of CC and MII oocyte miRNAs were identified using in silico prediction algorithms. Using oligonucleotide microarrays, genome-wide gene expression was studied in oocytes (10 pools of 19 3 oocytes/each) and 10 individual CC samples. TaqMan miRNA assays were used to confirm the sequencing results in independent pools of MII oocytes (3 pools of 8 3 oocytes/each) and CC samples (3 pools of 7 3 CCs/each). The functional role of one miRNA, MIR23a, was assessed in primary cultures of human CCs. MAIN RESULTS AND THE ROLE OF CHANCE Deep sequencing of small RNAs yielded more than 1 million raw reads. By mapping reads with a single location to the human genome, known miRNAs that were abundant in MII oocytes (MIR184, MIR100 and MIR10A) or CCs (MIR29a, MIR30d, MIR21, MIR93, MIR320a, MIR125a and the LET7 family) were identified. Predicted target genes of the oocyte miRNAs were associated with the regulation of transcription and cell cycle, whereas genes targeted by CC miRNAs were involved in extracellular matrix and apoptosis. Comparison of the predicted miRNA target genes and mRNA microarray data resulted in a list of 224 target genes that were differentially expressed in MII oocytes and CCs, including PTGS2, CTGF and BMPR1B that are important for cumulus-oocyte communication. Functional analysis using primary CC cultures revealed that BCL2 and CYP19A1 mRNA levels were decreased upon MIR23a overexpression. LIMITATIONS, REASONS FOR CAUTION Only known miRNAs were investigated in the present study on COCs. Moreover, the source of the material is MII oocytes that failed to fertilize. WIDER IMPLICATIONS OF THE FINDINGS The present findings suggest that miRNA could play a role in the regulation of the oocyte and CC crosstalk. STUDY FUNDING/COMPETING INTEREST(S) This work was partially supported by a grant from Ferring Pharmaceuticals. The authors of the study have no conflict of interest to report. TRIAL REGISTRATION NUMBER Not applicable. /////////////////////////
Follicle stages
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Recent Publications
Search for Antibody

created: Sept. 1, 2010, 4:21 p.m. by: hsueh   email:
home page:
last update: Aug. 2, 2013, 1:57 p.m. by: hsueh    email:

Use the back button of your browser to return to the Gene List.

Click here to return to gene search form