Stanford Home
Ovarian Kaleidoscope Database (OKdb)



Transgenic Mouse Models



Hsueh lab


since 01/2001:

pyrophosphatase (inorganic) 2 OKDB#: 4335
 Symbols: PPA2 Species: human
 Synonyms: HSPC124, FLJ20459, MGC49850, SID6-306,  Locus: 4q25 in Homo sapiens

For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!


DNA Microarrays
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene is localized to the mitochondrion, is highly similar to members of the inorganic pyrophosphatase (PPase) family, and contains the signature sequence essential for the catalytic activity of PPase. PPases catalyze the hydrolysis of pyrophosphate to inorganic phosphate, which is important for the phosphate metabolism of cells. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq]
General function
Cellular localization
Ovarian function
Comment Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. Lorca T et al. Recent results indicate that regulating the balance between cyclin-B-Cdc2 kinase, also known as M-phase-promoting factor (MPF), and protein phosphatase 2A (PP2A) is crucial to enable correct mitotic entry and exit. In this work, we studied the regulatory mechanisms controlling the cyclin-B-Cdc2 and PP2A balance by analysing the activity of the Greatwall kinase and PP2A, and the different components of the MPF amplification loop (Myt1, Wee1, Cdc25) during the first embryonic cell cycle. Previous data indicated that the Myt1-Wee1-Cdc25 equilibrium is tightly regulated at the G2-M and M-G1 phase transitions; however, no data exist regarding the regulation of this balance during M phase and interphase. Here, we demonstrate that constant regulation of the cyclin-B-Cdc2 amplification loop is required for correct mitotic division and to promote correct timing of mitotic entry. Our results show that removal of Cdc25 from metaphase-II-arrested oocytes promotes mitotic exit, whereas depletion of either Myt1 or Wee1 in interphase egg extracts induces premature mitotic entry. We also provide evidence that, besides the cyclin-B-Cdc2 amplification loop, the Greatwall-PP2A pathway must also be tightly regulated to promote correct first embryonic cell division. When PP2A is prematurely inhibited in the absence of cyclin-B-Cdc2 activation, endogenous cyclin-A-Cdc2 activity induces irreversible aberrant mitosis in which there is, first, partial transient phosphorylation of mitotic substrates and, second, subsequent rapid and complete degradation of cyclin A and cyclin B, thus promoting premature and rapid exit from mitosis.
Expression regulated by
Ovarian localization
Follicle stages
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody

created: June 22, 2010, 10:21 p.m. by: hsueh   email:
home page:
last update: June 22, 2010, 10:21 p.m. by: hsueh    email:

Use the back button of your browser to return to the Gene List.

Click here to return to gene search form