Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

cyclin B3 OKDB#: 4255
 Symbols: CCNB3 Species: human
 Synonyms:  Locus: Xp11.22 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. Nguyen TB et al. We report the identification and expression pattern of a full-length human cDNA and a partial mouse cDNA encoding cyclin B3. Cyclin B3 (CCNB3) is conserved from Caenorhabditis elegans to Homo sapiens and has an undefined meiotic function in female, but not male Drosophila melanogaster. We show that H. sapiens cyclin B3 interacts with cdk2, is localized to the nucleus, and is degraded during anaphase entry after the degradation of cyclin B1. Degradation is dependent on sequences conserved in a destruction box motif. Overexpression of nondegradable cyclin B3 blocks the mitotic cell cycle in late anaphase, and at higher doses it can interfere with progression through G(1) and entry into S phase. H. sapiens cyclin B3 mRNA and protein are detected readily in developing germ cells in the human testis and not in any other tissue. The mouse cDNA has allowed us to further localize cyclin B3 mRNA to leptotene and zygotene spermatocytes. The expression pattern of mammalian cyclin B3 suggests that it may be important for events occurring in early meiotic prophase I.

NCBI Summary: The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins function as positive regulators of cyclin-dependent kinases (CDKs), and thereby play an essential role in the control of the cell cycle. Different cyclins exhibit distinct expression and degradation patterns, which contribute to the temporal coordination of each mitotic event. Studies of similar genes in chicken and drosophila suggest that this cyclin may associate with CDC2 and CDK2 kinases, and may be required for proper spindle reorganization and restoration of the interphase nucleus. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Oct 2011]
General function Chromosome organization, Cell cycle regulation
Comment
Cellular localization Nuclear
Comment
Ovarian function Oocyte maturation, Early embryo development
Comment Degradation of Ccnb3 is essential for maintenance of MII arrest in oocyte. Meng TG et al. (2019) Before fertilization, ovulated mammalian oocytes are arrested at the metaphase of second meiosis (MII), which is maintained by the so-called cytostatic factor (CSF). It is well known that the continuous synthesis and accumulation of cyclin B is critical for maintaining the CSF-mediated MII arrest. Recent studies by us and others have shown that Ccnb3 is required for the metaphase-to-anaphase transition during the first meiosis of mouse oocytes, but whether Ccnb3 plays a role in MII arrest and exit remains unknown. Here, we showed that the protein level of Ccnb3 gradually decreased during oocyte meiotic maturation, and exogenous expression of Ccnb3 led to release of MII arrest, degradation of securin, separation of sister chromatids, extrusion of the second polar body (PB2), and finally entry into interphase. These phenotypes could be rescued by inhibition of Wee1B or CDK2. Our results indicate that Ccnb3 plays a critical regulatory role in MII arrest and exit in mouse oocytes.////////////////// Cyclin B3 is required for metaphase to anaphase transition in oocyte meiosis I. Li Y et al. (2019) Meiosis with a single round of DNA replication and two successive rounds of chromosome segregation requires specific cyclins associated with cyclin-dependent kinases (CDKs) to ensure its fidelity. But how cyclins control the distinctive meiosis is still largely unknown. In this study, we explored the role of cyclin B3 in female meiosis by generating Ccnb3 mutant mice via CRISPR/Cas9. Ccnb3 mutant oocytes characteristically arrested at metaphase I (MetI) with normal spindle assembly and lacked enough anaphase-promoting complex/cyclosome (APC/C) activity, which is spindle assembly checkpoint (SAC) independent, to initiate anaphase I (AnaI). Securin siRNA or CDK1 inhibitor supplements rescued the MetI arrest. Furthermore, CCNB3 directly interacts with CDK1 to exert kinase function. Besides, the MetI arrest oocytes had normal development after intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA), along with releasing the sister chromatids, which implies that Ccnb3 exclusively functioned in meiosis I, rather than meiosis II. Our study sheds light on the specific cell cycle control of cyclins in meiosis.////////////////// Cyclin B3 promotes anaphase I onset in oocyte meiosis. Karasu ME et al. (2019) Meiosis poses unique challenges because two rounds of chromosome segregation must be executed without intervening DNA replication. Mammalian cells express numerous temporally regulated cyclins, but how these proteins collaborate to control meiosis remains poorly understood. Here, we show that female mice genetically ablated for cyclin B3 are viable-indicating that the protein is dispensable for mitotic divisions-but are sterile. Mutant oocytes appear normal until metaphase I but then display a highly penetrant failure to transition to anaphase I. They arrest with hallmarks of defective anaphase-promoting complex/cyclosome (APC/C) activation, including no separase activity, high CDK1 activity, and high cyclin B1 and securin levels. Partial APC/C activation occurs, however, as exogenously expressed APC/C substrates can be degraded. Cyclin B3 forms active kinase complexes with CDK1, and meiotic progression requires cyclin B3-associated kinase activity. Cyclin B3 homologues from frog, zebrafish, and fruit fly rescue meiotic progression in cyclin B3-deficient mouse oocytes, indicating conservation of the biochemical properties and possibly cellular functions of this germline-critical cyclin.////////////////// Cyclin B3 Controls Anaphase Onset Independent of Spindle Assembly Checkpoint in Meiotic Oocytes. Zhang T et al. (2015) Cyclin B3 is a relatively new member of the cyclin family whose functions are little known. We found that depletion of cyclin B3 inhibited metaphase-anaphase transition as indicated by a well-sustained MI spindle and cyclin B1 expression in meiotic oocytes after extended culture. This effect was independent of spindle assembly checkpoint activity, since both Bub3 and BubR1 signals were not observed at kinetochores in MI-arrested cells. The metaphase I arrest was not rescued by either Mad2 knockdown or cdc20 overexpression, but it was rescued by securin RNAi. We conclude that cyclin B3 controls the metaphase-anaphase transition by activating APC/C(cdc20) in meiotic oocytes, a process that does not rely on SAC activity.////////////////// Caenorhabditis elegans Cyclin B3 Is Required for Multiple Mitotic Processes Including Alleviation of a Spindle Checkpoint-Dependent Block in Anaphase Chromosome Segregation. Deyter GM et al. The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration, centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3-depleted embryos is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective suppression or enhancement of CYB-3-dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3 plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC-dependent block in anaphase chromosome segregation.
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 2 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: Cyclin B3 is dispensable for mouse spermatogenesis. Karasu ME et al. (2019) Cyclins, as regulatory partners of cyclin-dependent kinases (CDKs), control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Compared to mitosis, relatively little is known about how cyclin-CDK complexes control meiosis, the specialized cell division that generates gametes for sexual production. Mouse cyclin B3 was previously shown to have expression restricted to the beginning of meiosis, making it a candidate to regulate meiotic events. Indeed, female mice lacking cyclin B3 are sterile because oocytes arrest at the metaphase-to-anaphase transition of meiosis I. However, whether cyclin B3 functions during spermatogenesis was untested. Here, we found that males lacking cyclin B3 are fertile and show no detectable defects in spermatogenesis based on histological analysis of seminiferous tubules. Cytological analysis further showed no detectable defects in homologous chromosome synapsis or meiotic progression, and suggested that recombination is initiated and completed efficiently. Moreover, absence of cyclin B3 did not exacerbate previously described meiotic defects in mutants deficient for cyclin E2, suggesting a lack of redundancy between these cyclins. Thus, unlike in females, cyclin B3 is not essential for meiosis in males despite its prominent meiosis-specific expression.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: Biallelic variant in cyclin B3 is associated with failure of maternal meiosis II and recurrent digynic triploidy. Fatemi N et al. (2020) Triploidy is one of the most common chromosome abnormalities affecting human gestation and accounts for an important fraction of first-trimester miscarriages. Triploidy has been demonstrated in a few cases of recurrent pregnancy loss (RPL) but its molecular mechanisms are unknown. This study aims to identify the genetic cause of RPL associated with fetus triploidy. We investigated genomic imprinting, genotyped sequence-tagged site (STS) markers and performed exome sequencing in a family including two sisters with RPL. Moreover, we evaluated oocyte maturation in vivo and in vitro and effect of the candidate protein variant in silico. While features of hydatidiform mole were excluded, the presence of triploidy of maternal origin was demonstrated in the fetuses. Oocyte maturation was deficient and all the maternally inherited pericentromeric STS alleles were homozygous in the fetuses. A deleterious missense variant (p.V1251D) of the cyclin B3 gene (CCNB3) affecting a residue conserved in placental mammals and located in a region that can interact with the cyclin-dependent kinase 1 or cyclin-dependent kinase 2 cosegregated in homozygosity with RPL. Here, we report a family in which a damaging variant in cyclin B3 is associated with the failure of oocyte meiosis II and recurrent fetus triploidy, implicating a rationale for CCNB3 testing in RPL.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: March 19, 2010, 12:15 p.m. by: hsueh   email:
home page:
last update: Sept. 23, 2020, 3:01 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form