Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

opioid receptor mu 1 OKDB#: 3282
 Symbols: OPRM1 Species: human
 Synonyms: MOP, MOR, LMOR, MOR1, OPRM, M-OR-1  Locus: 6q25.2 in Homo sapiens
HPMR


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes one of at least three opioid receptors in humans; the mu opioid receptor (MOR). The MOR is the principal target of endogenous opioid peptides and opioid analgesic agents such as beta-endorphin and enkephalins. The MOR also has an important role in dependence to other drugs of abuse, such as nicotine, cocaine, and alcohol via its modulation of the dopamine system. The NM_001008503.2:c.118A>G allele has been associated with opioid and alcohol addiction and variations in pain sensitivity but evidence for it having a causal role is conflicting. Multiple transcript variants encoding different isoforms have been found for this gene. Though the canonical MOR belongs to the superfamily of 7-transmembrane-spanning G-protein-coupled receptors some isoforms of this gene have only 6 transmembrane domains. [provided by RefSeq, Oct 2013]
General function Receptor
Comment
Cellular localization Plasma membrane
Comment
Ovarian function Oogenesis, Oocyte maturation, Early embryo development
Comment Opiate receptor blockade on human granulosa cells inhibits VEGF release. Lunger F et al. (2016) The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment Implication of mu opioid receptor in the in vitro maturation of oocytes and its effects on subsequent fertilization and embryo development in mice. Olabarrieta E et al. (2019) Oocyte maturation is the process by which immature oocytes acquire all the necessary characteristics for successful fertilization. The endogenous opioid peptides have been suggested to have a role modulating this process. However, little is known about its implication and the effect of exposing oocyte maturation to opioids on the subsequent fertilization and embryo development. Hence, in the present work, we focused on elucidating the function of the mu opioid receptor (OPRM1) in the modulation of the oocyte maturation. We analyzed the expression and localization of OPRM1 in mice oocytes and granulosa cells by reverse-transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. To observe the activity of the OPRM1, immature oocytes were incubated with morphine agonist and/or naloxone antagonist and we evaluated the PI3K/Akt and MAPK pathways, as well as the effect on the subsequent fertilization and embryo development. OPRM1 was present in mice oocytes and granulosa cells, changing its expression pattern depending on the maturation stage. Moreover, morphine, modulating PI3K/Akt and MAPK pathways, helped oocytes to reach blastocyst stage, which was reverted by naloxone. These results propose the OPRM1 as a possible therapeutic target for in vitro maturation culture medium, as it could improve the blastocyst rates obtained in the actual reproduction assisted techniques.//////////////////Expression and localization of opioid receptors during the maturation of human oocytes. Agirregoitia E et al. The endogenous opioid system has been characterized in some female reproductive organs, but little is known about the expression of these receptors in human oocytes. This study investigated the presence and differential distribution of the opioid receptors during the maturation of human oocytes. A total of 821 human oocytes from an intracytoplasmic sperm injection (ICSI) programme were studied including 213 at germinal-vesicle (GV) stage and 164 at metaphase-I (MI) stage and 444 failed fertilization metaphase-II (MII) oocytes. Additionally 31 MII oocytes corresponding to cases where ICSI was not attempted and 50 failed fertilization MII oocytes from the IVF programme were included. Western blot analysis revealed the presence of the delta (OPRD1), kappa (OPRK1) and mu (OPRM1) opioid receptors in human oocytes. The OPRK1 and OPRM1 immunostaining patterns changed during the maturation of the oocyte, while the OPRD1 pattern was the same throughout. In particular, OPRD1 were detected in peripheral tissue from the GV to the MII stage. OPRK1 were found peripherally at the GV stage, more internally at MI and homogeneously at MII. Finally, OPRM1 were located peripherally at the GV stage and homogeneously in MI and MII oocytes. Opioids may have a role in oocyte maturation, acting via receptors. The opioid system has been well characterized in the central nervous system, but it is now known that opioids also act in reproductive organs. However, little is known about the presence and function of this system in human oocytes and its role in their maturation. In this study, we investigated the presence and differential distribution of three (delta, kappa and mu) opioid receptors (proteins which bind the opioids) during the maturation of human oocytes. A total of 821 human oocytes (from 253 patients) not suitable for intracytoplasmic sperm injection (ICSI) or which did not develop into an embryo after ICSI were studied. Thus, we have verified the presence of the delta, kappa and mu opioid receptors in human oocytes. The kappa and mu localization changed during the maturation of the oocyte, while the Delta localization was the same throughout. In particular, the delta receptor was detected in the periphery of the oocyte. On the other hand, the kappa receptor was found peripherally at the beginning, more internally during maturation and homogeneously at the end of maturation. Finally, the Mu receptor was located peripherally at the beginning of maturation and homogeneously in the rest of the maturation stages. This finding suggests a possible role for opioids, acting via receptors, in the maturation of the oocyte.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: June 22, 2006, 2:58 p.m. by: alex   email:
home page:
last update: July 30, 2019, 3:34 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form