Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

BUB1 mitotic checkpoint serine/threonine kinase OKDB#: 3061
 Symbols: BUB1 Species: human
 Synonyms: BUB1A, BUB1L, hBUB1  Locus: 2q13 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment BUB-1 targets PP2A:B56 to regulate chromosome congression during meiosis I in C. elegans oocytes. Bel Borja L et al. (2020) Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore-microtubule attachments in yeast and mouse meiosis. In C. elegans the closest BUBR1 ortholog lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.//////////////////

NCBI Summary: This gene encodes a serine/threonine-protein kinase that play a central role in mitosis. The encoded protein functions in part by phosphorylating members of the mitotic checkpoint complex and activating the spindle checkpoint. This protein also plays a role in inhibiting the activation of the anaphase promoting complex/cyclosome. This protein may also function in the DNA damage response. Mutations in this gene have been associated with aneuploidy and several forms of cancer. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]
General function
Comment
Cellular localization Nuclear
Comment
Ovarian function Oocyte maturation, Early embryo development
Comment Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1. Lagirand-Cantaloube J et al. (2017) In human eggs, aneuploidy increases with age and can result in infertility and genetic diseases. Studies in mouse oocytes suggest that reduced centromere cohesion and spindle assembly checkpoint (SAC) activity could be at the origin of chromosome missegregation. Little is known about these two features in humans. Here, we show that in human eggs, inter-kinetochore distances of bivalent chromosomes strongly increase with age. This results in the formation of univalent chromosomes during metaphase I (MI) and of single chromatids in metaphase II (MII). We also investigated SAC activity by checking the localization of BUB1 and BUBR1. We found that they localize at the kinetochore with a similar temporal timing than in mitotic cells and in a MPS1-dependent manner, suggesting that the SAC signalling pathway is active in human oocytes. Moreover, our data also suggest that this checkpoint is inactivated when centromere cohesion is lost in MI and consequently cannot inhibit premature sister chromatid separation. Finally, we show that the kinetochore localization of BUB1 and BUBR1 decreases with the age of the oocyte donors. This could contribute to oocyte aneuploidy.////////////////// Regulation of APC/C Activity in Oocytes by a Bub1-Dependent Spindle Assembly Checkpoint. McGuinness BE et al. BACKGROUND: Missegregation of chromosomes during meiosis in human females causes aneuploidy, including trisomy 21, and is thought also to be the major cause of age-related infertility. Most errors are thought to occur at the first meiotic division. The high frequency of errors raises questions as to whether the surveillance mechanism known as the spindle assembly checkpoint (SAC) that controls the anaphase-promoting complex or cyclosome (APC/C) operates effectively in oocytes. Experimental approaches hitherto used to inactivate the SAC in oocytes suffer from a number of drawbacks. RESULTS: Bub1 protein was depleted specifically in oocytes with a Zp3-Cre transgene to delete exons 7 and 8 from a floxed BUB1(F) allele. Loss of Bub1 greatly accelerates resolution of chiasmata and extrusion of polar bodies. It also causes defective biorientation of bivalents, massive chromosome missegregation at meiosis I, and precocious loss of cohesion between sister centromeres. By using a quantitative assay for APC/C-mediated securin destruction, we show that the APC/C is activated in an exponential fashion, with activity peaking 12-13 hr after GVBD, and that this process is advanced by 5 hr in oocytes lacking Bub1. Importantly, premature chiasmata resolution does not occur in Bub1-deficient oocytes also lacking either the APC/C's Apc2 subunit or separase. Finally, we show that Bub1's kinase domain is not required to delay APC/C activation. CONCLUSIONS: We conclude that far from being absent or ineffective, the SAC largely determines the timing of APC/C and hence separase activation in oocytes, delaying it for about 5 hr. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. Pelech S et al. Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation.
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Expression profiles of cohesins, shugoshins and spindle assembly checkpoint genes in rhesus macaque oocytes predict their susceptibility for aneuploidy during embryonic development. Dupont C et al. High frequencies of chromosomal anomalies are reported in human and non-human primate in vitro-produced preimplantation embryos. It is unclear why certain embryos develop aneuploidies while others remain euploid. A differential susceptibility to aneuploidy is most likely a consequence of events that occur before oocyte collection. One hypothesis is that the relative transcript levels of cohesins, shugoshins and spindle assembly checkpoint genes are correlated with the occurrence of chromosomal anomalies. Transcript levels of these genes were quantified in individual oocytes that were either mature (group 1, low aneuploidy rate) or immature (group 2, high aneuploidy rate) at retrieval, utilizing TaqMan-based real-time PCR. The transcript level in each oocyte was categorized as absent, below the median or above the median in order to conduct comparisons. Statistically significant differences were observed between group 1 and group 2 for SGOL1 and BUB1. There were more oocytes with SGOL1 expression levels above the median in group 1, while oocytes lacking BUB1 were only observed in group 1. These findings suggest that higher SGOL1 levels in group 1 oocytes could better protect against a premature separation of sister chromatids than in embryos derived from group 2 oocytes. The absence of BUB1 transcripts in group 1 was frequently associated with reduced expression of either mitotic cohesins or shugoshins. We hypothesize that ablation of BUB1 could induce mitotic arrest in oocytes that fail to express a complete complement of cohesins and shugoshins, thereby reducing the number of developing aneuploid preimplantation embryos. Islet transplantation reverses the effects of maternal diabetes on mouse oocytes. Cheng P et al. Maternal diabetes adversely affects preimplantation embryo development and oocyte maturation. Thus, it is important to identify ways to eliminate the effects of maternal diabetes on preimplantation embryos and oocytes. The objectives of this study were to investigate whether islet transplantation could reverse the effects of diabetes on oocytes. Our results revealed that maternal diabetes induced decreased ovulation; increased the frequency of meiotic spindle defects, chromosome misalignment, and aneuploidy; increased the relative expression levels of Mad2 and Bub1, and enhanced the sensitivity of oocytes to parthenogenetic activation. Islet transplantation prevented these detrimental effects. Therefore, we concluded that islet transplantation could reverse the effects of diabetes on oocytes and that this technique may be useful to treat the fundamental reproductive problems of women with diabetes mellitus.
Follicle stages
Comment Bub1 Prevents Chromosome Misalignment and Precocious Anaphase during Mouse Oocyte Meiosis. Yin S et al. In mitosis the checkpoint proteins ensure faithful chromosome segregation by delaying onset of anaphase until all sister chromatids align at the metaphase plate of the bipolar spindle correctly. In the present study we blocked the function of Bub1 during meiosis by microinjecting anti-Bub1 specific antibody into cytoplasm of mouse oocytes, and found that depletion of Bub1 induced evident cyclin B degradation and precocious anaphase onset. Bub1 suppression also overrode the checkpoint-dependent cell cycle arrest provoked by a low dosage of nocodazole. Furthermore, Bub1 depletion induced a significantly higher percentage of oocytes with misaligned chromosomes. In addition, we depicted the localization dynamics of Bub1 in response to spindle damage and its relationship with microtubules and chromosomes, providing further evidence for Bub1's role as a spindle checkpoint protein. Our data suggest that Bub1 is a critical spindle checkpoint protein that regulates accurate chromosome alignment and homolog disjunction in mammalian oocyte meiosis.
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: subfertile
Comment: Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Leland S et al. Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here, we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: April 26, 2006, 1:49 p.m. by: rami   email:
home page:
last update: Jan. 1, 2021, 11:57 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form