Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Axl Receptor Tyrosine Kinase OKDB#: 2143
 Symbols: AXL Species: human
 Synonyms: ONCOGENE AXL| AXL TRANSFORMING GENE|Tyrosine-protein kinase receptor UFO precursor  Locus: 19q13.1-q13.2 in Homo sapiens
HPMR


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene is a member of the receptor tyrosine kinase subfamily. Although it is similar to other receptor tyrosine kinases, the Axl protein represents a unique structure of the extracellular region that juxtaposes IgL and FNIII repeats. It transduce signals from the extracellular matrix into the cytoplasm by binding growth factors like vitamin K-dependent protein growth-arrest-specific gene 6. It is involved in the stimulation of cell proliferation. This receptor can also mediate cell aggregation by homophilic binding. Axl is a chronic myelogenous leukemia-associated oncogene and also associated with colon cancer and melanoma. It is in close vicinity to the bcl3 oncogene which is at 19q13.1-q13.2. The Axl gene is evolutionarily conserved between vertebrate species. This gene has two different alternatively spliced transcript variants.
General function Receptor
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by LH
Comment
Ovarian localization Ovarian tumor
Comment This gene was found in a mouse DNA array analysis of transcripts expressed in mouse preovulatory follicles. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Rankin EB et al. The receptor tyrosine kinase AXL is thought to play a role in metastasis; however, the therapeutic efficacy of an AXL-targeting agent remains largely untested in metastatic disease. In this study, we defined AXL as a therapeutic target for metastatic ovarian cancer. AXL is primarily expressed in metastases and advanced-stage human ovarian tumors but not in normal ovarian epithelium. Genetic inhibition of AXL in human metastatic ovarian tumor cells is sufficient to prevent the initiation of metastatic disease in vivo. Mechanistically, inhibition of AXL signaling in animals with metastatic disease results in decreased invasion and matrix metalloproteinase activity. Most importantly, soluble human AXL receptors that imposed a specific blockade of the GAS6/AXL pathway had a profound inhibitory effect on progression of established metastatic ovarian cancer without normal tissue toxicity. These results offer the first genetic validation of GAS6/AXL targeting as an effective strategy for inhibition of metastatic tumor progression in vivo. Furthermore, this study defines the soluble AXL receptor as a therapeutic candidate agent for treatment of metastatic ovarian cancer, for which current therapies are ineffective.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: infertile - non-ovarian defect
Comment: Hypothalamic but not pituitary or ovarian defects underlie the reproductive abnormalities in Axl/Tyro3 null mice. Pierce A et al. AXL and TYRO3, members of the TYRO3, AXL and MER (TAM) family of tyrosine kinase receptors, modulate GnRH neuronal cell migration, survival and gene expression. Axl/Tyro3 null mice exhibit a selective loss of GnRH neurons, delayed sexual maturation and irregular estrous cycles. Here we determined whether the defects were due to direct ovarian defects, altered pituitary sensitivity to GnRH and/or an impaired LH surge mechanism. Ovarian histology and markers of folliculogenesis and atresia as well as corpora luteal development and ovarian response to superovulation were not impaired. Axl/Tryo3 null mice exhibited a robust LH response to exogenous GnRH, suggesting no altered pituitary sensitivity. Ovariectomized Axl/Tyro3 null mice, however, demonstrated an impaired ability to mount a steroid-induced LH surge. Loss of GnRH neurons in Axl/Tyro3 null mice impairs the sex hormone-induced gonadotropin surge resulting in estrous cycle abnormalities confirming that TAM family members contribute to normal female reproductive function.

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Oct. 13, 2003, 3:47 p.m. by: xin   email:
home page:
last update: Aug. 21, 2012, 9:22 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form