Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Atp-binding Cassette, Subfamily D, Member 4 OKDB#: 2032
 Symbols: ABCD4 Species: human
 Synonyms: PEROXISOMAL MEMBRANE PROTEIN 1-LIKE, PXMP1L| P70R| PMP69|  Locus: 14q24.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the ALD subfamily, which is involved in peroxisomal import of fatty acids and/or fatty acyl-CoAs in the organelle. All known peroxisomal ABC transporters are half transporters which require a partner half transporter molecule to form a functional homodimeric or heterodimeric transporter. The function of this peroxisomal membrane protein is unknown. However, it is speculated that it may function as a heterodimer for another peroxisomal ABC transporter and, therefore, may modify the adrenoleukodystrophy phenotype. It may also play a role in the process of peroxisome biogenesis. Alternative splicing of this gene by exon deletion and retained introns results in five observed products.
General function Channel/transport protein
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
Comment Polycystic ovary syndrome (PCOS) affects 5% of reproductive aged women and is the leading cause of anovulatory infertility. A hallmark of PCOS is excessive theca cell androgen secretion, which is directly linked to the symptoms of PCOS. Our previous studies demonstrated that theca cells from PCOS ovaries maintained in long term culture persistently secrete significantly greater amounts of androgens than normal theca cells, suggesting an intrinsic abnormality. Furthermore, previous studies suggested that ovarian hyperandrogenemia is inherited as an autosomal dominant trait. However, the genes responsible for ovarian hyperandrogenemia of PCOS have not been identified. In this present study, Wood JR, et al carried out microarray analysis to define the gene networks involved in excess androgen synthesis by the PCOS theca cells in order to identify candidate PCOS genes. Analysis revealed that PCOS theca cells have a gene expression profile that is distinct from normal theca cells. Included in the cohort of genes with increased mRNA abundance in PCOS theca cells were aldehyde dehydrogenase 6 and retinol dehydrogenase 2, which play a role in all-trans-retinoic acid biosynthesis and the transcription factor GATA6. We demonstrated that retinoic acid and GATA6 increased the expression of 17alpha-hydroxylase, providing a functional link between altered gene expression and intrinsic abnormalities in PCOS theca cells. Thus, the analyses have 1) defined a stable molecular phenotype of PCOS theca cells, 2) suggested new mechanisms for excess androgen synthesis by PCOS theca cells, and 3) identified new candidate genes that may be involved in the genetic etiology of PCOS. This is one of the genes with Altered mRNA Abundance in PCOS Theca Cells as compared with normal theca cells Maintained Under Basal Conditions.
Ovarian localization
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: July 22, 2003, 5:16 p.m. by: Rami   email:
home page:
last update: July 26, 2003, 8:39 p.m. by: system    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form