Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

protein tyrosine phosphatase non-receptor type 11 OKDB#: 1265
 Symbols: PTPN11 Species: human
 Synonyms: CFC, NS1, JMML, SHP2, BPTP3, PTP2C, METCDS, PTP-1D, SH-PTP2, SH-PTP3  Locus: 12q24.13 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment YAP and TAZ, Hippo Signaling Targets, Act as a Rheostat for Nuclear SHP2 Function. Tsutsumi R 2013 et al. SHP2 is a ubiquitously expressed protein tyrosine phosphatase, deregulation of which is associated with malignant neoplasms and developmental disorders. SHP2 is required for full activation of RAS-Erk signaling in the cytoplasm and is also present in the nucleus, where it promotes Wnt target gene activation through dephosphorylation of parafibromin. SHP2 is distributed both to the cytoplasm and nucleus at low cell density but is excluded from the nucleus at high cell density. Here, we show that SHP2 physically interacts with transcriptional coactivators YAP and TAZ, targets of the cell-density-sensing Hippo signal. Through the interaction, nonphosphorylated YAP/TAZ promote nuclear translocalization of SHP2, which in turn stimulates TCF/LEF- and TEAD-regulated genes via parafibromin dephosphorylation. Conversely, YAP/TAZ phosphorylated by Hippo signaling sequester SHP2 in the cytoplasm, thereby preventing nuclear accumulation of SHP2. Hence, YAP/TAZ serve as a rheostat for nuclear SHP2 function, which is switched off by the Hippo signal. ///////////////////////// The protein-tyrosine phosphatases are a highly pleomorphic set of molecules having a role in regulating the responses of eukaryotic cells to extracellular signals . They achieve this by regulating the phosphotyrosine content of specific intracellular proteins. The PTPases have been grouped by virtue of the characteristic catalytic domain sequence similarities that define this family. Dechert et al. (1995) noted that the noncatalytic domain shows a striking degree of sequence heterogeneity. In general, however, mammalian PTPases can be subdivided into 1 of 2 broad categories: (1) transmembrane receptor PTPases that contain linked cytoplasmic catalytic domains, and (2) intracellular PTPases. Included within the latter category are 2 closely related mammalian intracellular PTPases whose sequences encode 2 tandem SRC homology 2 (SH2) domains that are located at the amino-terminal side of a single PTPase catalytic domain. SH2 domains enable the binding of these SH2 domain-containing PTPases to specific phosphotyrosine residues within protein sequences.

NCBI Summary: The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia. [provided by RefSeq, Aug 2016]
General function Intracellular signaling cascade, Enzyme, Transferase, Hydrolase
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Oogenesis, Oocyte maturation, Early embryo development
Comment SHP2 Nuclear/Cytoplasmic Trafficking in Granulosa Cells Is Essential for Oocyte Meiotic Resumption and Maturation. Idrees M et al. (2021) Src-homology-2-containing phosphotyrosine phosphatase (SHP2), a classic cytoplasmic protein and a major regulator of receptor tyrosine kinases and G protein-coupled receptors, plays a significant role in preimplantation embryo development. In this study, we deciphered the role of SHP2 in the somatic compartment of oocytes during meiotic maturation. SHP2 showed nuclear/cytoplasmic localization in bovine cumulus and human granulosa (COV434) cells. Follicle-stimulating hormone (FSH) treatment significantly enhanced cytoplasmic SHP2 localization, in contrast to the E2 treatment, which augmented nuclear localization. Enhanced cytoplasmic SHP2 was found to negatively regulate the expression of the ERα-transcribed NPPC and NPR2 mRNAs, which are vital for oocyte meiotic arrest. The co-immunoprecipitation results revealed the presence of the SHP2/ERα complex in the germinal vesicle-stage cumulus-oocyte complexes, and this complex significantly decreased with the progression of meiotic maturation. The complex formation between ERα and SHP2 was also confirmed by using a series of computational modeling methods. To verify the correlation between SHP2 and NPPC/NPR2, SHP2 was knocked down via RNA interference, and NPPC and NPR2 mRNAs were analyzed in the control, E2, and FSH-stimulated COV434 cells. Furthermore, phenyl hydrazonopyrazolone sulfonate 1, a site-directed inhibitor of active SHP2, showed no significant effect on the ERα-transcribed NPPC and NPR2 mRNAs. Taken together, these findings support a novel nuclear/cytoplasmic role of SHP2 in oocyte meiotic resumption and maturation.////////////////// PTPN11 (SHP2) Is Indispensable for Growth Factors and Cytokine Signal Transduction During Bovine Oocyte Maturation and Blastocyst Development. Idrees M et al. (2019) This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.//////////////////
Expression regulated by
Comment Russell DL, et al 1999 reported the differentiation-dependent prolactin responsiveness and stat (signal transducers and activators of transcription) signaling in rat ovarian cells. PRL activates an important cytokine signaling cascade that is obligatory for maintaining luteal cell function in the rat ovary. To determine when specific components of this cascade are expressed and can be activated by PRL, the auhors analyzed the expression of receptor subtypes (short, PRL-R-S, and long, PRL-R-L), the presence and kinetics of Stat (signal transducer and activator of transcription) activation using the PRL-response element (PRL-RE) of the alpha 2M (alpha 2-macroglobulin) gene, acid the content and hormonal regulation of three specific modulators of cytokine signaling; the tyrosine phosphatases (SHP-1 and SHP-2), and the protein inhibitor of activated Stat3 (PIAS-3). These components were analyzed in differentiating granulosa/luteal cells of hypophysectomized (H) rats and in corpora lutea of pregnant rats. Despite the increased PRL-R-L expression in differentiated granulosa cells, PRL did not stimulate detectable activation of Stats. Rather PRL activation of Stat5, principally Stat5b, occurred in association with luteinization. In contrast, granulosa cells of untreated immature and H rats contained a high level of DNA binding activity, which was shown to be comprised entirely of activated, phosphorylated Stat3. Treatment with estrogen and FSH reduced the amount of phosphorylated Stat3 and abolished its ability to bind DNA, an effect temporally related to increased PIAS-3. Expression of SHP-1 (but not SHP-2) was also hormonally regulated; SHP-1 mRNA and protein were high in granulosa cells of H rats, decreased by estrogen and FSH, and subsequently increased dramatically with luteinization. Of particular note, SHP-1 was localized in cytoplasm of granulosa cells in atretic follicles but was distinctly nuclear in luteal cells, indicative of different functional roles.
Ovarian localization
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Aug. 14, 2001, 3:34 p.m. by: hsueh   email:
home page:
last update: Feb. 14, 2021, 10:21 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form